tsujimotterの下書きノート

このブログは「tsujimotterのノートブック」の下書きです。数学の勉強過程や日々思ったことなどをゆるーくメモしていきます。下書きなので適当です。

記事一覧はこちらです。このブログの趣旨はこちら

メインブログである「tsujimotterのノートブログ」はこちら

数学

対応関係

「ガロア群の作用を与える」って具体的にどういうことなんだろうと思っていたけど、なるほどフロベニウスの作用を具体的に記述すれば良いのかと納得した。 上の円分拡大 の場合を考える。ここで とする。添加元 に対する、フロベニウス の作用は 乗になる。…

数学語

「数学語」と私が勝手に呼んでいるものがある.一般に用いられる日本語ではあるものの,数学の議論の中でしか使わない用法をする言葉のことである.ある意味テクニカルタームなのだけれど,独学だとなかなか気づきにくい.その中の一つとして「~によって特…

誤差逆伝播法の計算

昔計算したんだけど、また忘れたので計算してみた。誤差逆伝播法は、多層のニューラルネットワークを考えたときに、その重みを学習するための方法の一つである。バックプロパゲーション(Backpropagation)とも言う。やってみるとわかるが、出力の誤差を計算…

レムニスケート関数とペー関数

の関係について気になったのでメモ。 としてが成り立つ。ってことは、単位レムニスケート曲線は楕円曲線に有理変換で移りあうということか。参考: http://www.juen.ac.jp/math/nakagawa/ellfunc.pdfの p.46 参照。

「K上の」代数曲線

を多項式環のイデアルとする。多項式環なので は多項式のイメージ。ちなみに一変数っぽく書いているけど、 である。 ここで、多項式(イデアル)の 零点集合を考える。多項式の零点を集めた集合のことで、ようするに楕円曲線 とか円 の解の集合みたいなもの…

分数の合同式についての疑問

クンマーの合同式でよく出てくる分数の合同式.あの合同式はうまく定義されているんだろうか. をそれぞれ既約分数として、 が と素であるとする.このとき「分数の合同式」をを計算し,既約分数で表示したときの分子が で割り切れること,と定義する. 気に…

特定の虚数乗法を持つような楕円曲線を作る方法

一つ前の記事と紛らわしいが、虚2次体 の整数環 が与えられたとき、自己同型環が となるような楕円曲線 を作ることができる。参考は、楕円曲線論概説(上)のp.121を読むこと。 を 0 でない の分数イデアルとする。埋め込み によって、 を の格子とみなす。…

j不変量が指定の値とするような楕円曲線のモデル

いつも忘れるのでメモ。[AEC III.1. Prop. 1.4 (c)] を参照すること。 に一致するような楕円曲線 のWeierstrassモデルを求める。 の値によって場合分けする。 のとき: のとき: のとき:

「趣味で数学をすること」の壁

「趣味で数学をすること」については、2つの壁があると思っています。一つの壁は「まわりに話のできる仲間がいない」ということです。学んだことを誰かに語りかけたい気持ちは、誰しもどこかに持っているはずですが、一方で、実生活の中で自身の学んだ数学…

平方完成と2次拡大

標数が2でない体Kの2次拡大の同型類全体は、K^×/(K^×)^2という可換群の非単位元全体と1対1対応があります。これは平方完成というテクニックによって示されます。そう、中学で習うあの平方完成です。標数が2の場合にどう変化があるか考えてみましょう。— p…

素数ゼミの記事

ネットニュース www.huffingtonpost.jpnature https://www.nature.com/articles/s42003-018-0025-7

モチーフ

モチーフ-代数多様体の数論的骨格/望月新一/ http://www.kurims.kyoto-u.ac.jp/~motizuki/Mochiifu.pdf いつかこの記事の背景にあるようなことを理解できるようになりたい

積分定数(その2)

まさかその2を書くことになるとは思わなかった。先の記事をツイートしたら、umezakiさんという方から「積分定数は0次のド・ラームコホモロジーとみなせる」ということを教えて貰った。感激したので、忘れないうちにメモ。ド・ラームコホモロジーについては…

積分定数

数学ガール「ポアンカレ予想」を読んでいて(あまり本題に関係なく)感動したのが、不定積分についてである。 の不定積分は、原始関数 を用いて以下のように表せる。ここで、 は積分定数である。高校の時からずっと機械的に(もしくはおまじない的に)「 は…

ガロア表現に関する資料

ガロア表現に関する参考資料をまとめます。 ガロア表現サマースクール 整数論サマースクール2009「l進ガロア表現とガロア変形の整数論」 報告集の原稿ページ http://www.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009proceeding.html特に以下を読…

Chebotarevの密度定理の使い方がわかった

2つのガロア表現 が与えられたとき,その同値性の判定は簡単ではない.ところが,それぞれのガロア表現の半単純化 に関して言えば, のすべての不分岐な素点 に対するフロベニウス元()のトレースの値 の一致によって同値性を判定できる.面白いことに,こ…

2次体の類数と連分数

ものさんという方に教えていただいたのですが、ザギヤー「数論入門 ゼータ関数と2次体」という本に面白い定理が載っていたので紹介します。数論入門―ゼータ関数と2次体作者: D.B.ザギヤー,片山孝次出版社/メーカー: 岩波書店発売日: 1990/08/02メディア: 単…

j-函数に関するあれこれメモ

山本先生の「数論入門2(岩波講座現代数学への入門)」に、僕が知りたかった「楕円モジュラー関数」と「虚二次体」の話が、この上なくわかりやすく書いてあったので、ここにご報告します。岩波講座 現代数学への入門〈5〉(9-10)数論入門1・2作者: 山本芳彦…

円分体の類数(相対類数)を調べたときのメモ

Wikipedia Cyclotomic field - Wikipedia 円分体 - Wikipedia 相対類数 (OEIS) 素数 p に対して A000927 - OEIS100 までの素数 https://oeis.org/A000927/b000927.txt一般の n に対して A061653 - OEISn = 162 まで https://oeis.org/A061653/b061653.txt Wi…

触れるゼータ関数はほかにもあった!

ボストン科学博物館でみれるらしい.ボストン科学博物館に、ζ関数を拝みにきました。 pic.twitter.com/SIqF5X9uPF— akita11/JunichiAkita (@akita11) August 24, 2016実際,公式ウェブサイトにいくと,それらしい写真が. www.mos.org そして3Dプリンタで出…

アイゼンシュタイン級数

英語版のアイゼンシュタイン級数の項目がなかなか充実しています Eisenstein series - Wikipedia, the free encyclopedia まず、保型性の証明が好き。あと、アイゼンシュタイン級数のq展開には約数関数が出てくる(約数関数のお化けみたいな級数)のだけど、…

ネットで読める岩澤理論の解説

最近この分野に興味をもって勉強しています。自分用の備忘録としてまとめておきます。 解説 原隆さん、総実代数体の非可換岩澤理論の展開 、@城崎新人セミナー https://www.math.kyoto-u.ac.jp/insei/proceeding/2008/hara.pdf@整数論サマースクール2008 h…

4n+1 型の合成数は2つの平方数の和であらわせるか?

私の日曜数学活動をサポートしてくれているパートナーから以下のような趣旨の質問をもらった。 (4n+1型の素数が必ず2つの平方数の和でかけるが)4n+1型の合成数は2つの平方数の和で表せるのか? これについては実はあまり深く考えたことがなかった。とて…

ガウス和が二次体の元になるのはなぜ?

ガウス和 をのように定義したとき、となるような square-free な整数 が存在することを示します。 は、二次体に付随するディリクレ指標で、以下のような準同型写像として定義されます。 以下は仮定します。 まず、 とおく。準同型定理より は の正規部分群で…

偶数ゼータの分母の求め方

こんなツイートをみかけたので。こうですか pic.twitter.com/u9LmEuq9WZ— ╭( ・ㅂ・)وउन्माद भाल्ल (@ryokubu2718) 2016年3月12日分母は von-Staudt & Clausen の定理があるので簡単に求まります。分子は、イデアル類群と関係があったりで、まったくもって自明…

存在して一意であれば「名前」をつけよう

「存在性の証明」と「一意性の証明」が大事だという感覚がなんとなくわかってきました。この2つを保証すれば、一意に定まる数(や関数など)を考えることができるんですね。一意に定まると言うことは、これに「名前」をつけることができるのです。たとえば…

「楕円曲線って何ですか?」という質問に対して、定義を答えて返すのはきっと何の意味もない

最近、楕円曲線に関しての進展があったようで、twitterの数学徒の間では話題になっているみたいである。楕円曲線は、フェルマーの最終定理の話ではよく出てくるし、ミレニアム問題のBSD予想にも関わっているし、何かとよく聞くワードではある。こういう状況…

Q. 無限級数の掛け算のやり方 についての回答

本編のブログ、 tsujimotter.hatenablog.comの数式展開について、以下のような質問をいただきました。okwave.jp 上に書いた私の回答におきまして、数式箇所が読みづらかったため、こちらのブログに同様の内容を書き留めておきたいと思います。時間ができたら…

ユークリッドにとって図そのものが数学的対象

最近、折り紙の作図可能性について議論したり、チューリング・マシンの計算理論について調べまくっているのですが、その中でユークリッドの作図理論についての考えが、まるで一変したのでメモしておきます。***作図の理論は、定木とコンパスのみを使った…

今,密かに「互いに素」がマイブーム

今,「互いに素」が熱い。互いに素という言葉は,否定的な響きのする数学用語であるが,こと整数論においては非常に強力な武器なのだ。 互いに素といえば「ユークリッドの互除法」を思い出す。互いに素な2つの数から,ユークリッドの互除法により という数…