tsujimotterの下書きノート

このブログは「tsujimotterのノートブック」の下書きです。数学の勉強過程や日々思ったことなどをゆるーくメモしていきます。下書きなので適当です。

記事一覧はこちらです。このブログの趣旨はこちら

メインブログである「tsujimotterのノートブログ」はこちら

虚2次体の類数が2のときのオイラーの素数生成多項式

以下の記事で書いたように、 1-4q が平方因子を持たないとして、虚2次体  \mathbb{Q}(\sqrt{1-4q}) が類数2であることと

 f_q(X) = X^2 + X + q

 X = 0, 1, \ldots, q-2 で素数か半素数(平方数も含む)であることが同値になることが知られています。
tsujimotter.hatenablog.com


そこで、虚2次体  \mathbb{Q}(\sqrt{1-4q}) が類数2であって、 \mathbb{Q}(\sqrt{1-4q}) の形で表されるすべてのケースに対して、 f_q(X) がどのような数になるのかを計算してみました。類数2の虚2次体の一覧はINTEGERSの表を参考にしました。
integers.hatenablog.com

ただし、INTEGERSの表は判別式  D の絶対値なので、 -D = 1-4q と読み替える必要があります( -D \equiv 1 \pmod{4} である必要があることに注意)。


以下では、ただただ計算結果を並べてみたいと思います。

 f_{4}(X) = X^2 + X + 4(類数2:  \mathbb{Q}(\sqrt{-15})

  •  f_{4}(0) = 0^2 + 0 + 4 = 2^{2}(半素数)
  •  f_{4}(1) = 1^2 + 1 + 4 = 2^{1}\cdot 3^{1}(半素数)
  •  f_{4}(2) = 2^2 + 2 + 4 = 2^{1}\cdot 5^{1}(半素数)

 f_{9}(X) = X^2 + X + 9(類数2:  \mathbb{Q}(\sqrt{-35})

  •  f_{9}(0) = 0^2 + 0 + 9 = 3^{2}(半素数)
  •  f_{9}(1) = 1^2 + 1 + 9 = 11^{1}
  •  f_{9}(2) = 2^2 + 2 + 9 = 3^{1}\cdot 5^{1}(半素数)
  •  f_{9}(3) = 3^2 + 3 + 9 = 3^{1}\cdot 7^{1}(半素数)
  •  f_{9}(4) = 4^2 + 4 + 9 = 29^{1}
  •  f_{9}(5) = 5^2 + 5 + 9 = 3^{1}\cdot 13^{1}(半素数)
  •  f_{9}(6) = 6^2 + 6 + 9 = 3^{1}\cdot 17^{1}(半素数)
  •  f_{9}(7) = 7^2 + 7 + 9 = 5^{1}\cdot 13^{1}(半素数)

 f_{13}(X) = X^2 + X + 13(類数2:  \mathbb{Q}(\sqrt{-51})

  •  f_{13}(0) = 0^2 + 0 + 13 = 13^{1}
  •  f_{13}(1) = 1^2 + 1 + 13 = 3^{1}\cdot 5^{1}(半素数)
  •  f_{13}(2) = 2^2 + 2 + 13 = 19^{1}
  •  f_{13}(3) = 3^2 + 3 + 13 = 5^{2}(半素数)
  •  f_{13}(4) = 4^2 + 4 + 13 = 3^{1}\cdot 11^{1}(半素数)
  •  f_{13}(5) = 5^2 + 5 + 13 = 43^{1}
  •  f_{13}(6) = 6^2 + 6 + 13 = 5^{1}\cdot 11^{1}(半素数)
  •  f_{13}(7) = 7^2 + 7 + 13 = 3^{1}\cdot 23^{1}(半素数)
  •  f_{13}(8) = 8^2 + 8 + 13 = 5^{1}\cdot 17^{1}(半素数)
  •  f_{13}(9) = 9^2 + 9 + 13 = 103^{1}
  •  f_{13}(10) = 10^2 + 10 + 13 = 3^{1}\cdot 41^{1}(半素数)
  •  f_{13}(11) = 11^2 + 11 + 13 = 5^{1}\cdot 29^{1}(半素数)

 f_{23}(X) = X^2 + X + 23(類数2:  \mathbb{Q}(\sqrt{-91})

  •  f_{23}(0) = 0^2 + 0 + 23 = 23^{1}
  •  f_{23}(1) = 1^2 + 1 + 23 = 5^{2}(半素数)
  •  f_{23}(2) = 2^2 + 2 + 23 = 29^{1}
  •  f_{23}(3) = 3^2 + 3 + 23 = 5^{1}\cdot 7^{1}(半素数)
  •  f_{23}(4) = 4^2 + 4 + 23 = 43^{1}
  •  f_{23}(5) = 5^2 + 5 + 23 = 53^{1}
  •  f_{23}(6) = 6^2 + 6 + 23 = 5^{1}\cdot 13^{1}(半素数)
  •  f_{23}(7) = 7^2 + 7 + 23 = 79^{1}
  •  f_{23}(8) = 8^2 + 8 + 23 = 5^{1}\cdot 19^{1}(半素数)
  •  f_{23}(9) = 9^2 + 9 + 23 = 113^{1}
  •  f_{23}(10) = 10^2 + 10 + 23 = 7^{1}\cdot 19^{1}(半素数)
  •  f_{23}(11) = 11^2 + 11 + 23 = 5^{1}\cdot 31^{1}(半素数)
  •  f_{23}(12) = 12^2 + 12 + 23 = 179^{1}
  •  f_{23}(13) = 13^2 + 13 + 23 = 5^{1}\cdot 41^{1}(半素数)
  •  f_{23}(14) = 14^2 + 14 + 23 = 233^{1}
  •  f_{23}(15) = 15^2 + 15 + 23 = 263^{1}
  •  f_{23}(16) = 16^2 + 16 + 23 = 5^{1}\cdot 59^{1}(半素数)
  •  f_{23}(17) = 17^2 + 17 + 23 = 7^{1}\cdot 47^{1}(半素数)
  •  f_{23}(18) = 18^2 + 18 + 23 = 5^{1}\cdot 73^{1}(半素数)
  •  f_{23}(19) = 19^2 + 19 + 23 = 13^{1}\cdot 31^{1}(半素数)
  •  f_{23}(20) = 20^2 + 20 + 23 = 443^{1}
  •  f_{23}(21) = 21^2 + 21 + 23 = 5^{1}\cdot 97^{1}(半素数)

 f_{29}(X) = X^2 + X + 29(類数2:  \mathbb{Q}(\sqrt{-115})

  •  f_{29}(0) = 0^2 + 0 + 29 = 29^{1}
  •  f_{29}(1) = 1^2 + 1 + 29 = 31^{1}
  •  f_{29}(2) = 2^2 + 2 + 29 = 5^{1}\cdot 7^{1}(半素数)
  •  f_{29}(3) = 3^2 + 3 + 29 = 41^{1}
  •  f_{29}(4) = 4^2 + 4 + 29 = 7^{2}(半素数)
  •  f_{29}(5) = 5^2 + 5 + 29 = 59^{1}
  •  f_{29}(6) = 6^2 + 6 + 29 = 71^{1}
  •  f_{29}(7) = 7^2 + 7 + 29 = 5^{1}\cdot 17^{1}(半素数)
  •  f_{29}(8) = 8^2 + 8 + 29 = 101^{1}
  •  f_{29}(9) = 9^2 + 9 + 29 = 7^{1}\cdot 17^{1}(半素数)
  •  f_{29}(10) = 10^2 + 10 + 29 = 139^{1}
  •  f_{29}(11) = 11^2 + 11 + 29 = 7^{1}\cdot 23^{1}(半素数)
  •  f_{29}(12) = 12^2 + 12 + 29 = 5^{1}\cdot 37^{1}(半素数)
  •  f_{29}(13) = 13^2 + 13 + 29 = 211^{1}
  •  f_{29}(14) = 14^2 + 14 + 29 = 239^{1}
  •  f_{29}(15) = 15^2 + 15 + 29 = 269^{1}
  •  f_{29}(16) = 16^2 + 16 + 29 = 7^{1}\cdot 43^{1}(半素数)
  •  f_{29}(17) = 17^2 + 17 + 29 = 5^{1}\cdot 67^{1}(半素数)
  •  f_{29}(18) = 18^2 + 18 + 29 = 7^{1}\cdot 53^{1}(半素数)
  •  f_{29}(19) = 19^2 + 19 + 29 = 409^{1}
  •  f_{29}(20) = 20^2 + 20 + 29 = 449^{1}
  •  f_{29}(21) = 21^2 + 21 + 29 = 491^{1}
  •  f_{29}(22) = 22^2 + 22 + 29 = 5^{1}\cdot 107^{1}(半素数)
  •  f_{29}(23) = 23^2 + 23 + 29 = 7^{1}\cdot 83^{1}(半素数)
  •  f_{29}(24) = 24^2 + 24 + 29 = 17^{1}\cdot 37^{1}(半素数)
  •  f_{29}(25) = 25^2 + 25 + 29 = 7^{1}\cdot 97^{1}(半素数)
  •  f_{29}(26) = 26^2 + 26 + 29 = 17^{1}\cdot 43^{1}(半素数)
  •  f_{29}(27) = 27^2 + 27 + 29 = 5^{1}\cdot 157^{1}(半素数)

 f_{31}(X) = X^2 + X + 31(類数2:  \mathbb{Q}(\sqrt{-123})

  •  f_{31}(0) = 0^2 + 0 + 31 = 31^{1}
  •  f_{31}(1) = 1^2 + 1 + 31 = 3^{1}\cdot 11^{1}(半素数)
  •  f_{31}(2) = 2^2 + 2 + 31 = 37^{1}
  •  f_{31}(3) = 3^2 + 3 + 31 = 43^{1}
  •  f_{31}(4) = 4^2 + 4 + 31 = 3^{1}\cdot 17^{1}(半素数)
  •  f_{31}(5) = 5^2 + 5 + 31 = 61^{1}
  •  f_{31}(6) = 6^2 + 6 + 31 = 73^{1}
  •  f_{31}(7) = 7^2 + 7 + 31 = 3^{1}\cdot 29^{1}(半素数)
  •  f_{31}(8) = 8^2 + 8 + 31 = 103^{1}
  •  f_{31}(9) = 9^2 + 9 + 31 = 11^{2}(半素数)
  •  f_{31}(10) = 10^2 + 10 + 31 = 3^{1}\cdot 47^{1}(半素数)
  •  f_{31}(11) = 11^2 + 11 + 31 = 163^{1}
  •  f_{31}(12) = 12^2 + 12 + 31 = 11^{1}\cdot 17^{1}(半素数)
  •  f_{31}(13) = 13^2 + 13 + 31 = 3^{1}\cdot 71^{1}(半素数)
  •  f_{31}(14) = 14^2 + 14 + 31 = 241^{1}
  •  f_{31}(15) = 15^2 + 15 + 31 = 271^{1}
  •  f_{31}(16) = 16^2 + 16 + 31 = 3^{1}\cdot 101^{1}(半素数)
  •  f_{31}(17) = 17^2 + 17 + 31 = 337^{1}
  •  f_{31}(18) = 18^2 + 18 + 31 = 373^{1}
  •  f_{31}(19) = 19^2 + 19 + 31 = 3^{1}\cdot 137^{1}(半素数)
  •  f_{31}(20) = 20^2 + 20 + 31 = 11^{1}\cdot 41^{1}(半素数)
  •  f_{31}(21) = 21^2 + 21 + 31 = 17^{1}\cdot 29^{1}(半素数)
  •  f_{31}(22) = 22^2 + 22 + 31 = 3^{1}\cdot 179^{1}(半素数)
  •  f_{31}(23) = 23^2 + 23 + 31 = 11^{1}\cdot 53^{1}(半素数)
  •  f_{31}(24) = 24^2 + 24 + 31 = 631^{1}
  •  f_{31}(25) = 25^2 + 25 + 31 = 3^{1}\cdot 227^{1}(半素数)
  •  f_{31}(26) = 26^2 + 26 + 31 = 733^{1}
  •  f_{31}(27) = 27^2 + 27 + 31 = 787^{1}
  •  f_{31}(28) = 28^2 + 28 + 31 = 3^{1}\cdot 281^{1}(半素数)
  •  f_{31}(29) = 29^2 + 29 + 31 = 17^{1}\cdot 53^{1}(半素数)

 f_{47}(X) = X^2 + X + 47(類数2:  \mathbb{Q}(\sqrt{-187})

  •  f_{47}(0) = 0^2 + 0 + 47 = 47^{1}
  •  f_{47}(1) = 1^2 + 1 + 47 = 7^{2}(半素数)
  •  f_{47}(2) = 2^2 + 2 + 47 = 53^{1}
  •  f_{47}(3) = 3^2 + 3 + 47 = 59^{1}
  •  f_{47}(4) = 4^2 + 4 + 47 = 67^{1}
  •  f_{47}(5) = 5^2 + 5 + 47 = 7^{1}\cdot 11^{1}(半素数)
  •  f_{47}(6) = 6^2 + 6 + 47 = 89^{1}
  •  f_{47}(7) = 7^2 + 7 + 47 = 103^{1}
  •  f_{47}(8) = 8^2 + 8 + 47 = 7^{1}\cdot 17^{1}(半素数)
  •  f_{47}(9) = 9^2 + 9 + 47 = 137^{1}
  •  f_{47}(10) = 10^2 + 10 + 47 = 157^{1}
  •  f_{47}(11) = 11^2 + 11 + 47 = 179^{1}
  •  f_{47}(12) = 12^2 + 12 + 47 = 7^{1}\cdot 29^{1}(半素数)
  •  f_{47}(13) = 13^2 + 13 + 47 = 229^{1}
  •  f_{47}(14) = 14^2 + 14 + 47 = 257^{1}
  •  f_{47}(15) = 15^2 + 15 + 47 = 7^{1}\cdot 41^{1}(半素数)
  •  f_{47}(16) = 16^2 + 16 + 47 = 11^{1}\cdot 29^{1}(半素数)
  •  f_{47}(17) = 17^2 + 17 + 47 = 353^{1}
  •  f_{47}(18) = 18^2 + 18 + 47 = 389^{1}
  •  f_{47}(19) = 19^2 + 19 + 47 = 7^{1}\cdot 61^{1}(半素数)
  •  f_{47}(20) = 20^2 + 20 + 47 = 467^{1}
  •  f_{47}(21) = 21^2 + 21 + 47 = 509^{1}
  •  f_{47}(22) = 22^2 + 22 + 47 = 7^{1}\cdot 79^{1}(半素数)
  •  f_{47}(23) = 23^2 + 23 + 47 = 599^{1}
  •  f_{47}(24) = 24^2 + 24 + 47 = 647^{1}
  •  f_{47}(25) = 25^2 + 25 + 47 = 17^{1}\cdot 41^{1}(半素数)
  •  f_{47}(26) = 26^2 + 26 + 47 = 7^{1}\cdot 107^{1}(半素数)
  •  f_{47}(27) = 27^2 + 27 + 47 = 11^{1}\cdot 73^{1}(半素数)
  •  f_{47}(28) = 28^2 + 28 + 47 = 859^{1}
  •  f_{47}(29) = 29^2 + 29 + 47 = 7^{1}\cdot 131^{1}(半素数)
  •  f_{47}(30) = 30^2 + 30 + 47 = 977^{1}
  •  f_{47}(31) = 31^2 + 31 + 47 = 1039^{1}
  •  f_{47}(32) = 32^2 + 32 + 47 = 1103^{1}
  •  f_{47}(33) = 33^2 + 33 + 47 = 7^{1}\cdot 167^{1}(半素数)
  •  f_{47}(34) = 34^2 + 34 + 47 = 1237^{1}
  •  f_{47}(35) = 35^2 + 35 + 47 = 1307^{1}
  •  f_{47}(36) = 36^2 + 36 + 47 = 7^{1}\cdot 197^{1}(半素数)
  •  f_{47}(37) = 37^2 + 37 + 47 = 1453^{1}
  •  f_{47}(38) = 38^2 + 38 + 47 = 11^{1}\cdot 139^{1}(半素数)
  •  f_{47}(39) = 39^2 + 39 + 47 = 1607^{1}
  •  f_{47}(40) = 40^2 + 40 + 47 = 7^{1}\cdot 241^{1}(半素数)
  •  f_{47}(41) = 41^2 + 41 + 47 = 29^{1}\cdot 61^{1}(半素数)
  •  f_{47}(42) = 42^2 + 42 + 47 = 17^{1}\cdot 109^{1}(半素数)
  •  f_{47}(43) = 43^2 + 43 + 47 = 7^{1}\cdot 277^{1}(半素数)
  •  f_{47}(44) = 44^2 + 44 + 47 = 2027^{1}
  •  f_{47}(45) = 45^2 + 45 + 47 = 29^{1}\cdot 73^{1}(半素数)

 f_{59}(X) = X^2 + X + 59(類数2:  \mathbb{Q}(\sqrt{-235})

  •  f_{59}(0) = 0^2 + 0 + 59 = 59^{1}
  •  f_{59}(1) = 1^2 + 1 + 59 = 61^{1}
  •  f_{59}(2) = 2^2 + 2 + 59 = 5^{1}\cdot 13^{1}(半素数)
  •  f_{59}(3) = 3^2 + 3 + 59 = 71^{1}
  •  f_{59}(4) = 4^2 + 4 + 59 = 79^{1}
  •  f_{59}(5) = 5^2 + 5 + 59 = 89^{1}
  •  f_{59}(6) = 6^2 + 6 + 59 = 101^{1}
  •  f_{59}(7) = 7^2 + 7 + 59 = 5^{1}\cdot 23^{1}(半素数)
  •  f_{59}(8) = 8^2 + 8 + 59 = 131^{1}
  •  f_{59}(9) = 9^2 + 9 + 59 = 149^{1}
  •  f_{59}(10) = 10^2 + 10 + 59 = 13^{2}(半素数)
  •  f_{59}(11) = 11^2 + 11 + 59 = 191^{1}
  •  f_{59}(12) = 12^2 + 12 + 59 = 5^{1}\cdot 43^{1}(半素数)
  •  f_{59}(13) = 13^2 + 13 + 59 = 241^{1}
  •  f_{59}(14) = 14^2 + 14 + 59 = 269^{1}
  •  f_{59}(15) = 15^2 + 15 + 59 = 13^{1}\cdot 23^{1}(半素数)
  •  f_{59}(16) = 16^2 + 16 + 59 = 331^{1}
  •  f_{59}(17) = 17^2 + 17 + 59 = 5^{1}\cdot 73^{1}(半素数)
  •  f_{59}(18) = 18^2 + 18 + 59 = 401^{1}
  •  f_{59}(19) = 19^2 + 19 + 59 = 439^{1}
  •  f_{59}(20) = 20^2 + 20 + 59 = 479^{1}
  •  f_{59}(21) = 21^2 + 21 + 59 = 521^{1}
  •  f_{59}(22) = 22^2 + 22 + 59 = 5^{1}\cdot 113^{1}(半素数)
  •  f_{59}(23) = 23^2 + 23 + 59 = 13^{1}\cdot 47^{1}(半素数)
  •  f_{59}(24) = 24^2 + 24 + 59 = 659^{1}
  •  f_{59}(25) = 25^2 + 25 + 59 = 709^{1}
  •  f_{59}(26) = 26^2 + 26 + 59 = 761^{1}
  •  f_{59}(27) = 27^2 + 27 + 59 = 5^{1}\cdot 163^{1}(半素数)
  •  f_{59}(28) = 28^2 + 28 + 59 = 13^{1}\cdot 67^{1}(半素数)
  •  f_{59}(29) = 29^2 + 29 + 59 = 929^{1}
  •  f_{59}(30) = 30^2 + 30 + 59 = 23^{1}\cdot 43^{1}(半素数)
  •  f_{59}(31) = 31^2 + 31 + 59 = 1051^{1}
  •  f_{59}(32) = 32^2 + 32 + 59 = 5^{1}\cdot 223^{1}(半素数)
  •  f_{59}(33) = 33^2 + 33 + 59 = 1181^{1}
  •  f_{59}(34) = 34^2 + 34 + 59 = 1249^{1}
  •  f_{59}(35) = 35^2 + 35 + 59 = 1319^{1}
  •  f_{59}(36) = 36^2 + 36 + 59 = 13^{1}\cdot 107^{1}(半素数)
  •  f_{59}(37) = 37^2 + 37 + 59 = 5^{1}\cdot 293^{1}(半素数)
  •  f_{59}(38) = 38^2 + 38 + 59 = 23^{1}\cdot 67^{1}(半素数)
  •  f_{59}(39) = 39^2 + 39 + 59 = 1619^{1}
  •  f_{59}(40) = 40^2 + 40 + 59 = 1699^{1}
  •  f_{59}(41) = 41^2 + 41 + 59 = 13^{1}\cdot 137^{1}(半素数)
  •  f_{59}(42) = 42^2 + 42 + 59 = 5^{1}\cdot 373^{1}(半素数)
  •  f_{59}(43) = 43^2 + 43 + 59 = 1951^{1}
  •  f_{59}(44) = 44^2 + 44 + 59 = 2039^{1}
  •  f_{59}(45) = 45^2 + 45 + 59 = 2129^{1}
  •  f_{59}(46) = 46^2 + 46 + 59 = 2221^{1}
  •  f_{59}(47) = 47^2 + 47 + 59 = 5^{1}\cdot 463^{1}(半素数)
  •  f_{59}(48) = 48^2 + 48 + 59 = 2411^{1}
  •  f_{59}(49) = 49^2 + 49 + 59 = 13^{1}\cdot 193^{1}(半素数)
  •  f_{59}(50) = 50^2 + 50 + 59 = 2609^{1}
  •  f_{59}(51) = 51^2 + 51 + 59 = 2711^{1}
  •  f_{59}(52) = 52^2 + 52 + 59 = 5^{1}\cdot 563^{1}(半素数)
  •  f_{59}(53) = 53^2 + 53 + 59 = 23^{1}\cdot 127^{1}(半素数)
  •  f_{59}(54) = 54^2 + 54 + 59 = 13^{1}\cdot 233^{1}(半素数)
  •  f_{59}(55) = 55^2 + 55 + 59 = 43^{1}\cdot 73^{1}(半素数)
  •  f_{59}(56) = 56^2 + 56 + 59 = 3251^{1}
  •  f_{59}(57) = 57^2 + 57 + 59 = 5^{1}\cdot 673^{1}(半素数)

 f_{67}(X) = X^2 + X + 67(類数2:  \mathbb{Q}(\sqrt{-267})

  •  f_{67}(0) = 0^2 + 0 + 67 = 67^{1}
  •  f_{67}(1) = 1^2 + 1 + 67 = 3^{1}\cdot 23^{1}(半素数)
  •  f_{67}(2) = 2^2 + 2 + 67 = 73^{1}
  •  f_{67}(3) = 3^2 + 3 + 67 = 79^{1}
  •  f_{67}(4) = 4^2 + 4 + 67 = 3^{1}\cdot 29^{1}(半素数)
  •  f_{67}(5) = 5^2 + 5 + 67 = 97^{1}
  •  f_{67}(6) = 6^2 + 6 + 67 = 109^{1}
  •  f_{67}(7) = 7^2 + 7 + 67 = 3^{1}\cdot 41^{1}(半素数)
  •  f_{67}(8) = 8^2 + 8 + 67 = 139^{1}
  •  f_{67}(9) = 9^2 + 9 + 67 = 157^{1}
  •  f_{67}(10) = 10^2 + 10 + 67 = 3^{1}\cdot 59^{1}(半素数)
  •  f_{67}(11) = 11^2 + 11 + 67 = 199^{1}
  •  f_{67}(12) = 12^2 + 12 + 67 = 223^{1}
  •  f_{67}(13) = 13^2 + 13 + 67 = 3^{1}\cdot 83^{1}(半素数)
  •  f_{67}(14) = 14^2 + 14 + 67 = 277^{1}
  •  f_{67}(15) = 15^2 + 15 + 67 = 307^{1}
  •  f_{67}(16) = 16^2 + 16 + 67 = 3^{1}\cdot 113^{1}(半素数)
  •  f_{67}(17) = 17^2 + 17 + 67 = 373^{1}
  •  f_{67}(18) = 18^2 + 18 + 67 = 409^{1}
  •  f_{67}(19) = 19^2 + 19 + 67 = 3^{1}\cdot 149^{1}(半素数)
  •  f_{67}(20) = 20^2 + 20 + 67 = 487^{1}
  •  f_{67}(21) = 21^2 + 21 + 67 = 23^{2}(半素数)
  •  f_{67}(22) = 22^2 + 22 + 67 = 3^{1}\cdot 191^{1}(半素数)
  •  f_{67}(23) = 23^2 + 23 + 67 = 619^{1}
  •  f_{67}(24) = 24^2 + 24 + 67 = 23^{1}\cdot 29^{1}(半素数)
  •  f_{67}(25) = 25^2 + 25 + 67 = 3^{1}\cdot 239^{1}(半素数)
  •  f_{67}(26) = 26^2 + 26 + 67 = 769^{1}
  •  f_{67}(27) = 27^2 + 27 + 67 = 823^{1}
  •  f_{67}(28) = 28^2 + 28 + 67 = 3^{1}\cdot 293^{1}(半素数)
  •  f_{67}(29) = 29^2 + 29 + 67 = 937^{1}
  •  f_{67}(30) = 30^2 + 30 + 67 = 997^{1}
  •  f_{67}(31) = 31^2 + 31 + 67 = 3^{1}\cdot 353^{1}(半素数)
  •  f_{67}(32) = 32^2 + 32 + 67 = 1123^{1}
  •  f_{67}(33) = 33^2 + 33 + 67 = 29^{1}\cdot 41^{1}(半素数)
  •  f_{67}(34) = 34^2 + 34 + 67 = 3^{1}\cdot 419^{1}(半素数)
  •  f_{67}(35) = 35^2 + 35 + 67 = 1327^{1}
  •  f_{67}(36) = 36^2 + 36 + 67 = 1399^{1}
  •  f_{67}(37) = 37^2 + 37 + 67 = 3^{1}\cdot 491^{1}(半素数)
  •  f_{67}(38) = 38^2 + 38 + 67 = 1549^{1}
  •  f_{67}(39) = 39^2 + 39 + 67 = 1627^{1}
  •  f_{67}(40) = 40^2 + 40 + 67 = 3^{1}\cdot 569^{1}(半素数)
  •  f_{67}(41) = 41^2 + 41 + 67 = 1789^{1}
  •  f_{67}(42) = 42^2 + 42 + 67 = 1873^{1}
  •  f_{67}(43) = 43^2 + 43 + 67 = 3^{1}\cdot 653^{1}(半素数)
  •  f_{67}(44) = 44^2 + 44 + 67 = 23^{1}\cdot 89^{1}(半素数)
  •  f_{67}(45) = 45^2 + 45 + 67 = 2137^{1}
  •  f_{67}(46) = 46^2 + 46 + 67 = 3^{1}\cdot 743^{1}(半素数)
  •  f_{67}(47) = 47^2 + 47 + 67 = 23^{1}\cdot 101^{1}(半素数)
  •  f_{67}(48) = 48^2 + 48 + 67 = 41^{1}\cdot 59^{1}(半素数)
  •  f_{67}(49) = 49^2 + 49 + 67 = 3^{1}\cdot 839^{1}(半素数)
  •  f_{67}(50) = 50^2 + 50 + 67 = 2617^{1}
  •  f_{67}(51) = 51^2 + 51 + 67 = 2719^{1}
  •  f_{67}(52) = 52^2 + 52 + 67 = 3^{1}\cdot 941^{1}(半素数)
  •  f_{67}(53) = 53^2 + 53 + 67 = 29^{1}\cdot 101^{1}(半素数)
  •  f_{67}(54) = 54^2 + 54 + 67 = 3037^{1}
  •  f_{67}(55) = 55^2 + 55 + 67 = 3^{1}\cdot 1049^{1}(半素数)
  •  f_{67}(56) = 56^2 + 56 + 67 = 3259^{1}
  •  f_{67}(57) = 57^2 + 57 + 67 = 3373^{1}
  •  f_{67}(58) = 58^2 + 58 + 67 = 3^{1}\cdot 1163^{1}(半素数)
  •  f_{67}(59) = 59^2 + 59 + 67 = 3607^{1}
  •  f_{67}(60) = 60^2 + 60 + 67 = 3727^{1}
  •  f_{67}(61) = 61^2 + 61 + 67 = 3^{1}\cdot 1283^{1}(半素数)
  •  f_{67}(62) = 62^2 + 62 + 67 = 29^{1}\cdot 137^{1}(半素数)
  •  f_{67}(63) = 63^2 + 63 + 67 = 4099^{1}
  •  f_{67}(64) = 64^2 + 64 + 67 = 3^{1}\cdot 1409^{1}(半素数)
  •  f_{67}(65) = 65^2 + 65 + 67 = 4357^{1}

 f_{101}(X) = X^2 + X + 101(類数2:  \mathbb{Q}(\sqrt{-403})

  •  f_{101}(0) = 0^2 + 0 + 101 = 101^{1}
  •  f_{101}(1) = 1^2 + 1 + 101 = 103^{1}
  •  f_{101}(2) = 2^2 + 2 + 101 = 107^{1}
  •  f_{101}(3) = 3^2 + 3 + 101 = 113^{1}
  •  f_{101}(4) = 4^2 + 4 + 101 = 11^{2}(半素数)
  •  f_{101}(5) = 5^2 + 5 + 101 = 131^{1}
  •  f_{101}(6) = 6^2 + 6 + 101 = 11^{1}\cdot 13^{1}(半素数)
  •  f_{101}(7) = 7^2 + 7 + 101 = 157^{1}
  •  f_{101}(8) = 8^2 + 8 + 101 = 173^{1}
  •  f_{101}(9) = 9^2 + 9 + 101 = 191^{1}
  •  f_{101}(10) = 10^2 + 10 + 101 = 211^{1}
  •  f_{101}(11) = 11^2 + 11 + 101 = 233^{1}
  •  f_{101}(12) = 12^2 + 12 + 101 = 257^{1}
  •  f_{101}(13) = 13^2 + 13 + 101 = 283^{1}
  •  f_{101}(14) = 14^2 + 14 + 101 = 311^{1}
  •  f_{101}(15) = 15^2 + 15 + 101 = 11^{1}\cdot 31^{1}(半素数)
  •  f_{101}(16) = 16^2 + 16 + 101 = 373^{1}
  •  f_{101}(17) = 17^2 + 17 + 101 = 11^{1}\cdot 37^{1}(半素数)
  •  f_{101}(18) = 18^2 + 18 + 101 = 443^{1}
  •  f_{101}(19) = 19^2 + 19 + 101 = 13^{1}\cdot 37^{1}(半素数)
  •  f_{101}(20) = 20^2 + 20 + 101 = 521^{1}
  •  f_{101}(21) = 21^2 + 21 + 101 = 563^{1}
  •  f_{101}(22) = 22^2 + 22 + 101 = 607^{1}
  •  f_{101}(23) = 23^2 + 23 + 101 = 653^{1}
  •  f_{101}(24) = 24^2 + 24 + 101 = 701^{1}
  •  f_{101}(25) = 25^2 + 25 + 101 = 751^{1}
  •  f_{101}(26) = 26^2 + 26 + 101 = 11^{1}\cdot 73^{1}(半素数)
  •  f_{101}(27) = 27^2 + 27 + 101 = 857^{1}
  •  f_{101}(28) = 28^2 + 28 + 101 = 11^{1}\cdot 83^{1}(半素数)
  •  f_{101}(29) = 29^2 + 29 + 101 = 971^{1}
  •  f_{101}(30) = 30^2 + 30 + 101 = 1031^{1}
  •  f_{101}(31) = 31^2 + 31 + 101 = 1093^{1}
  •  f_{101}(32) = 32^2 + 32 + 101 = 13^{1}\cdot 89^{1}(半素数)
  •  f_{101}(33) = 33^2 + 33 + 101 = 1223^{1}
  •  f_{101}(34) = 34^2 + 34 + 101 = 1291^{1}
  •  f_{101}(35) = 35^2 + 35 + 101 = 1361^{1}
  •  f_{101}(36) = 36^2 + 36 + 101 = 1433^{1}
  •  f_{101}(37) = 37^2 + 37 + 101 = 11^{1}\cdot 137^{1}(半素数)
  •  f_{101}(38) = 38^2 + 38 + 101 = 1583^{1}
  •  f_{101}(39) = 39^2 + 39 + 101 = 11^{1}\cdot 151^{1}(半素数)
  •  f_{101}(40) = 40^2 + 40 + 101 = 1741^{1}
  •  f_{101}(41) = 41^2 + 41 + 101 = 1823^{1}
  •  f_{101}(42) = 42^2 + 42 + 101 = 1907^{1}
  •  f_{101}(43) = 43^2 + 43 + 101 = 1993^{1}
  •  f_{101}(44) = 44^2 + 44 + 101 = 2081^{1}
  •  f_{101}(45) = 45^2 + 45 + 101 = 13^{1}\cdot 167^{1}(半素数)
  •  f_{101}(46) = 46^2 + 46 + 101 = 31^{1}\cdot 73^{1}(半素数)
  •  f_{101}(47) = 47^2 + 47 + 101 = 2357^{1}
  •  f_{101}(48) = 48^2 + 48 + 101 = 11^{1}\cdot 223^{1}(半素数)
  •  f_{101}(49) = 49^2 + 49 + 101 = 2551^{1}
  •  f_{101}(50) = 50^2 + 50 + 101 = 11^{1}\cdot 241^{1}(半素数)
  •  f_{101}(51) = 51^2 + 51 + 101 = 2753^{1}
  •  f_{101}(52) = 52^2 + 52 + 101 = 2857^{1}
  •  f_{101}(53) = 53^2 + 53 + 101 = 2963^{1}
  •  f_{101}(54) = 54^2 + 54 + 101 = 37^{1}\cdot 83^{1}(半素数)
  •  f_{101}(55) = 55^2 + 55 + 101 = 3181^{1}
  •  f_{101}(56) = 56^2 + 56 + 101 = 37^{1}\cdot 89^{1}(半素数)
  •  f_{101}(57) = 57^2 + 57 + 101 = 3407^{1}
  •  f_{101}(58) = 58^2 + 58 + 101 = 13^{1}\cdot 271^{1}(半素数)
  •  f_{101}(59) = 59^2 + 59 + 101 = 11^{1}\cdot 331^{1}(半素数)
  •  f_{101}(60) = 60^2 + 60 + 101 = 3761^{1}
  •  f_{101}(61) = 61^2 + 61 + 101 = 11^{1}\cdot 353^{1}(半素数)
  •  f_{101}(62) = 62^2 + 62 + 101 = 4007^{1}
  •  f_{101}(63) = 63^2 + 63 + 101 = 4133^{1}
  •  f_{101}(64) = 64^2 + 64 + 101 = 4261^{1}
  •  f_{101}(65) = 65^2 + 65 + 101 = 4391^{1}
  •  f_{101}(66) = 66^2 + 66 + 101 = 4523^{1}
  •  f_{101}(67) = 67^2 + 67 + 101 = 4657^{1}
  •  f_{101}(68) = 68^2 + 68 + 101 = 4793^{1}
  •  f_{101}(69) = 69^2 + 69 + 101 = 4931^{1}
  •  f_{101}(70) = 70^2 + 70 + 101 = 11^{1}\cdot 461^{1}(半素数)
  •  f_{101}(71) = 71^2 + 71 + 101 = 13^{1}\cdot 401^{1}(半素数)
  •  f_{101}(72) = 72^2 + 72 + 101 = 11^{1}\cdot 487^{1}(半素数)
  •  f_{101}(73) = 73^2 + 73 + 101 = 5503^{1}
  •  f_{101}(74) = 74^2 + 74 + 101 = 5651^{1}
  •  f_{101}(75) = 75^2 + 75 + 101 = 5801^{1}
  •  f_{101}(76) = 76^2 + 76 + 101 = 5953^{1}
  •  f_{101}(77) = 77^2 + 77 + 101 = 31^{1}\cdot 197^{1}(半素数)
  •  f_{101}(78) = 78^2 + 78 + 101 = 6263^{1}
  •  f_{101}(79) = 79^2 + 79 + 101 = 6421^{1}
  •  f_{101}(80) = 80^2 + 80 + 101 = 6581^{1}
  •  f_{101}(81) = 81^2 + 81 + 101 = 11^{1}\cdot 613^{1}(半素数)
  •  f_{101}(82) = 82^2 + 82 + 101 = 6907^{1}
  •  f_{101}(83) = 83^2 + 83 + 101 = 11^{1}\cdot 643^{1}(半素数)
  •  f_{101}(84) = 84^2 + 84 + 101 = 13^{1}\cdot 557^{1}(半素数)
  •  f_{101}(85) = 85^2 + 85 + 101 = 7411^{1}
  •  f_{101}(86) = 86^2 + 86 + 101 = 7583^{1}
  •  f_{101}(87) = 87^2 + 87 + 101 = 7757^{1}
  •  f_{101}(88) = 88^2 + 88 + 101 = 7933^{1}
  •  f_{101}(89) = 89^2 + 89 + 101 = 8111^{1}
  •  f_{101}(90) = 90^2 + 90 + 101 = 8291^{1}
  •  f_{101}(91) = 91^2 + 91 + 101 = 37^{1}\cdot 229^{1}(半素数)
  •  f_{101}(92) = 92^2 + 92 + 101 = 11^{1}\cdot 787^{1}(半素数)
  •  f_{101}(93) = 93^2 + 93 + 101 = 37^{1}\cdot 239^{1}(半素数)
  •  f_{101}(94) = 94^2 + 94 + 101 = 11^{1}\cdot 821^{1}(半素数)
  •  f_{101}(95) = 95^2 + 95 + 101 = 9221^{1}
  •  f_{101}(96) = 96^2 + 96 + 101 = 9413^{1}
  •  f_{101}(97) = 97^2 + 97 + 101 = 13^{1}\cdot 739^{1}(半素数)
  •  f_{101}(98) = 98^2 + 98 + 101 = 9803^{1}
  •  f_{101}(99) = 99^2 + 99 + 101 = 73^{1}\cdot 137^{1}(半素数)

 f_{107}(X) = X^2 + X + 107(類数2:  \mathbb{Q}(\sqrt{-427})

  •  f_{107}(0) = 0^2 + 0 + 107 = 107^{1}
  •  f_{107}(1) = 1^2 + 1 + 107 = 109^{1}
  •  f_{107}(2) = 2^2 + 2 + 107 = 113^{1}
  •  f_{107}(3) = 3^2 + 3 + 107 = 7^{1}\cdot 17^{1}(半素数)
  •  f_{107}(4) = 4^2 + 4 + 107 = 127^{1}
  •  f_{107}(5) = 5^2 + 5 + 107 = 137^{1}
  •  f_{107}(6) = 6^2 + 6 + 107 = 149^{1}
  •  f_{107}(7) = 7^2 + 7 + 107 = 163^{1}
  •  f_{107}(8) = 8^2 + 8 + 107 = 179^{1}
  •  f_{107}(9) = 9^2 + 9 + 107 = 197^{1}
  •  f_{107}(10) = 10^2 + 10 + 107 = 7^{1}\cdot 31^{1}(半素数)
  •  f_{107}(11) = 11^2 + 11 + 107 = 239^{1}
  •  f_{107}(12) = 12^2 + 12 + 107 = 263^{1}
  •  f_{107}(13) = 13^2 + 13 + 107 = 17^{2}(半素数)
  •  f_{107}(14) = 14^2 + 14 + 107 = 317^{1}
  •  f_{107}(15) = 15^2 + 15 + 107 = 347^{1}
  •  f_{107}(16) = 16^2 + 16 + 107 = 379^{1}
  •  f_{107}(17) = 17^2 + 17 + 107 = 7^{1}\cdot 59^{1}(半素数)
  •  f_{107}(18) = 18^2 + 18 + 107 = 449^{1}
  •  f_{107}(19) = 19^2 + 19 + 107 = 487^{1}
  •  f_{107}(20) = 20^2 + 20 + 107 = 17^{1}\cdot 31^{1}(半素数)
  •  f_{107}(21) = 21^2 + 21 + 107 = 569^{1}
  •  f_{107}(22) = 22^2 + 22 + 107 = 613^{1}
  •  f_{107}(23) = 23^2 + 23 + 107 = 659^{1}
  •  f_{107}(24) = 24^2 + 24 + 107 = 7^{1}\cdot 101^{1}(半素数)
  •  f_{107}(25) = 25^2 + 25 + 107 = 757^{1}
  •  f_{107}(26) = 26^2 + 26 + 107 = 809^{1}
  •  f_{107}(27) = 27^2 + 27 + 107 = 863^{1}
  •  f_{107}(28) = 28^2 + 28 + 107 = 919^{1}
  •  f_{107}(29) = 29^2 + 29 + 107 = 977^{1}
  •  f_{107}(30) = 30^2 + 30 + 107 = 17^{1}\cdot 61^{1}(半素数)
  •  f_{107}(31) = 31^2 + 31 + 107 = 7^{1}\cdot 157^{1}(半素数)
  •  f_{107}(32) = 32^2 + 32 + 107 = 1163^{1}
  •  f_{107}(33) = 33^2 + 33 + 107 = 1229^{1}
  •  f_{107}(34) = 34^2 + 34 + 107 = 1297^{1}
  •  f_{107}(35) = 35^2 + 35 + 107 = 1367^{1}
  •  f_{107}(36) = 36^2 + 36 + 107 = 1439^{1}
  •  f_{107}(37) = 37^2 + 37 + 107 = 17^{1}\cdot 89^{1}(半素数)
  •  f_{107}(38) = 38^2 + 38 + 107 = 7^{1}\cdot 227^{1}(半素数)
  •  f_{107}(39) = 39^2 + 39 + 107 = 1667^{1}
  •  f_{107}(40) = 40^2 + 40 + 107 = 1747^{1}
  •  f_{107}(41) = 41^2 + 41 + 107 = 31^{1}\cdot 59^{1}(半素数)
  •  f_{107}(42) = 42^2 + 42 + 107 = 1913^{1}
  •  f_{107}(43) = 43^2 + 43 + 107 = 1999^{1}
  •  f_{107}(44) = 44^2 + 44 + 107 = 2087^{1}
  •  f_{107}(45) = 45^2 + 45 + 107 = 7^{1}\cdot 311^{1}(半素数)
  •  f_{107}(46) = 46^2 + 46 + 107 = 2269^{1}
  •  f_{107}(47) = 47^2 + 47 + 107 = 17^{1}\cdot 139^{1}(半素数)
  •  f_{107}(48) = 48^2 + 48 + 107 = 2459^{1}
  •  f_{107}(49) = 49^2 + 49 + 107 = 2557^{1}
  •  f_{107}(50) = 50^2 + 50 + 107 = 2657^{1}
  •  f_{107}(51) = 51^2 + 51 + 107 = 31^{1}\cdot 89^{1}(半素数)
  •  f_{107}(52) = 52^2 + 52 + 107 = 7^{1}\cdot 409^{1}(半素数)
  •  f_{107}(53) = 53^2 + 53 + 107 = 2969^{1}
  •  f_{107}(54) = 54^2 + 54 + 107 = 17^{1}\cdot 181^{1}(半素数)
  •  f_{107}(55) = 55^2 + 55 + 107 = 3187^{1}
  •  f_{107}(56) = 56^2 + 56 + 107 = 3299^{1}
  •  f_{107}(57) = 57^2 + 57 + 107 = 3413^{1}
  •  f_{107}(58) = 58^2 + 58 + 107 = 3529^{1}
  •  f_{107}(59) = 59^2 + 59 + 107 = 7^{1}\cdot 521^{1}(半素数)
  •  f_{107}(60) = 60^2 + 60 + 107 = 3767^{1}
  •  f_{107}(61) = 61^2 + 61 + 107 = 3889^{1}
  •  f_{107}(62) = 62^2 + 62 + 107 = 4013^{1}
  •  f_{107}(63) = 63^2 + 63 + 107 = 4139^{1}
  •  f_{107}(64) = 64^2 + 64 + 107 = 17^{1}\cdot 251^{1}(半素数)
  •  f_{107}(65) = 65^2 + 65 + 107 = 4397^{1}
  •  f_{107}(66) = 66^2 + 66 + 107 = 7^{1}\cdot 647^{1}(半素数)
  •  f_{107}(67) = 67^2 + 67 + 107 = 4663^{1}
  •  f_{107}(68) = 68^2 + 68 + 107 = 4799^{1}
  •  f_{107}(69) = 69^2 + 69 + 107 = 4937^{1}
  •  f_{107}(70) = 70^2 + 70 + 107 = 5077^{1}
  •  f_{107}(71) = 71^2 + 71 + 107 = 17^{1}\cdot 307^{1}(半素数)
  •  f_{107}(72) = 72^2 + 72 + 107 = 31^{1}\cdot 173^{1}(半素数)
  •  f_{107}(73) = 73^2 + 73 + 107 = 7^{1}\cdot 787^{1}(半素数)
  •  f_{107}(74) = 74^2 + 74 + 107 = 5657^{1}
  •  f_{107}(75) = 75^2 + 75 + 107 = 5807^{1}
  •  f_{107}(76) = 76^2 + 76 + 107 = 59^{1}\cdot 101^{1}(半素数)
  •  f_{107}(77) = 77^2 + 77 + 107 = 6113^{1}
  •  f_{107}(78) = 78^2 + 78 + 107 = 6269^{1}
  •  f_{107}(79) = 79^2 + 79 + 107 = 6427^{1}
  •  f_{107}(80) = 80^2 + 80 + 107 = 7^{1}\cdot 941^{1}(半素数)
  •  f_{107}(81) = 81^2 + 81 + 107 = 17^{1}\cdot 397^{1}(半素数)
  •  f_{107}(82) = 82^2 + 82 + 107 = 31^{1}\cdot 223^{1}(半素数)
  •  f_{107}(83) = 83^2 + 83 + 107 = 7079^{1}
  •  f_{107}(84) = 84^2 + 84 + 107 = 7247^{1}
  •  f_{107}(85) = 85^2 + 85 + 107 = 7417^{1}
  •  f_{107}(86) = 86^2 + 86 + 107 = 7589^{1}
  •  f_{107}(87) = 87^2 + 87 + 107 = 7^{1}\cdot 1109^{1}(半素数)
  •  f_{107}(88) = 88^2 + 88 + 107 = 17^{1}\cdot 467^{1}(半素数)
  •  f_{107}(89) = 89^2 + 89 + 107 = 8117^{1}
  •  f_{107}(90) = 90^2 + 90 + 107 = 8297^{1}
  •  f_{107}(91) = 91^2 + 91 + 107 = 61^{1}\cdot 139^{1}(半素数)
  •  f_{107}(92) = 92^2 + 92 + 107 = 8663^{1}
  •  f_{107}(93) = 93^2 + 93 + 107 = 8849^{1}
  •  f_{107}(94) = 94^2 + 94 + 107 = 7^{1}\cdot 1291^{1}(半素数)
  •  f_{107}(95) = 95^2 + 95 + 107 = 9227^{1}
  •  f_{107}(96) = 96^2 + 96 + 107 = 9419^{1}
  •  f_{107}(97) = 97^2 + 97 + 107 = 9613^{1}
  •  f_{107}(98) = 98^2 + 98 + 107 = 17^{1}\cdot 577^{1}(半素数)
  •  f_{107}(99) = 99^2 + 99 + 107 = 10007^{1}
  •  f_{107}(100) = 100^2 + 100 + 107 = 59^{1}\cdot 173^{1}(半素数)
  •  f_{107}(101) = 101^2 + 101 + 107 = 7^{1}\cdot 1487^{1}(半素数)
  •  f_{107}(102) = 102^2 + 102 + 107 = 10613^{1}
  •  f_{107}(103) = 103^2 + 103 + 107 = 31^{1}\cdot 349^{1}(半素数)
  •  f_{107}(104) = 104^2 + 104 + 107 = 11027^{1}
  •  f_{107}(105) = 105^2 + 105 + 107 = 17^{1}\cdot 661^{1}(半素数)